科技 technology
您现在的位置:首页 > 科技 > 自动驾驶汽车可能会被愚弄,以“发现”不存在的障碍

新闻

全国学会服务地方产业发展试点项目落地山西:迎来“晋”式医药发展变革 全国学会服务地方产业发展试点项目落地山西:迎来“...

6月17日,全国学会服务地方产业发展试点项目正式落地山西。该项目由中国科协主导,振东制药协办,研发总...

  • 十亿善款,三十二年坚守:振东制药公益“长城”这样建成

    如果说慈善事业是企业责任感的一个缩影。那么振东制药的慈善“侧写”便是大爱无疆。山西振东健康产业集团自太行山深处诞生,稳扎稳打、守正创新,跻身中国药企中流砥柱行列。引导旗下公益扶贫办凝聚共识、加强合作...

  • 千人竞逐“红气球”,振东集团公益精神在晋中大地闪耀

    5月25日,山西省高校新区(山西大学城)热闹非凡,2025“红气球挑战赛”(晋中站)在此鸣笛开赛。这场没有奖金的赛事,却吸引了来自社会各界及山西大学城高校的一千余名选手踊跃参与,他们“一起红气球,快乐学急救”...

  • 振东集团:32年慈善长跑背后的“共富密码”

    在商业与公益的天平上,山西振东健康产业集团选择了后者——即便负债也要坚持的"变态慈善"。这家从太行山走出的民营企业,用32年时间构建起一套独特的公益生态系统,累计捐赠超10亿元,将"与民同富、与家同兴、与国...

财经

唯品会经营范围变更 新增医疗器械、蔬菜水果零售等业务 唯品会经营范围变更 新增医疗器械、蔬菜水果零售等...

天眼查数据显示,3月31日,唯品会(中国)有限公司发生工商变更,经营范围新增蔬菜零售;非许可类医疗器...

  • 品钛旗下赣州爱信小贷正式接入人民银行征信系统

        北京2020年4月7日 /美通社/ -- 领先的金融科技解决方案提供商品钛(Pintec Technology Holdings Ltd., Nasdaq: PT) 今日宣布旗下的赣州爱信网络小额贷款有限公司(下称“爱信小贷”)正式接入中国人民银行...

  • 特斯拉空头近一个月减少超200万股

      据金融分析机构S3 Partner数据显示,截至4月3日,特斯拉未平仓空头头寸为1604万股,占流通股的10.97%。过去30天,特斯拉未平仓空头头寸减少222万股或12.18%,期间股价上涨32%;过去一周,特斯拉未平仓空头头...

  • 特斯拉展示新型自研呼吸机:与Model 3共用零件

      特斯拉之前宣布将开发新的呼吸机,而现在他们展示了这种新型设计。特斯拉在YouTube发布了视频,其工程师演示了两个版本的呼吸机,一个是把所有零件摆在桌子上的原型,另外一个则是组装好的设备,用于显示在医...

  • 特朗普称将在下一轮刺激计划中为美国民众发放更多的钱

      北京时间4月7日消息,美国总统特朗普称将在下一轮刺激计划中为美国民众发放更多的钱。在白宫新闻发布会上表示,特朗普“肯定”想听取下一次刺激计划的想法,并补充道他希望其中包括“切切实实的基础设施”。  ...

自动驾驶汽车可能会被愚弄,以“发现”不存在的障碍

发布时间:2020/03/10 科技 浏览:492

 
对于自动驾驶汽车,没有什么比感知周围发生的事情更重要的了。像人类驾驶员一样,自动驾驶汽车也需要具有即时决策的能力。
如今,大多数自动驾驶汽车都依靠多个传感器来感知世界。大多数系统结合使用摄像头,雷达传感器和LiDAR(光检测和测距)传感器。在车上,计算机将这些数据融合在一起,以全面了解汽车周围的状况。没有这些数据,自动驾驶汽车将无法安全航行于整个世界。使用多个传感器系统的汽车既性能更好,又更安全(每个系统都可以作为对其他系统的检查),但是任何系统都无法免受攻击。
不幸的是,这些系统并非万无一失。只需在交通标志上贴上贴纸以完全改变其含义,就可以欺骗基于相机的感知系统。
密歇根大学RobustNet研究小组的工作表明,基于LiDAR的感知系统也可以构成。通过策略性地欺骗LiDAR传感器信号,攻击可以使车辆基于LiDAR的感知系统欺骗“看到”不存在的障碍物。如果发生这种情况,车辆可能会因阻塞交通或突然制动而导致撞车。
基于LiDAR的感知系统具有两个组件:传感器和处理传感器数据的机器学习模型。 LiDAR传感器通过发射光信号并测量该信号从物体反弹并返回传感器所需的时间来计算其与周围环境之间的距离。这种来回的持续时间也称为“飞行时间”。
激光雷达单元每秒发出数万个光信号。然后,其机器学习模型使用返回的脉冲来绘制车辆周围世界的图片。这类似于蝙蝠如何使用回声定位来了解夜间的障碍物。
问题是这些脉冲可能会被欺骗。为了欺骗传感器,攻击者可以将自己的光信号照射到传感器上。这就是您需要混合传感器的全部。
但是,要欺骗LiDAR传感器以“看到”不存在的“车辆”则更加困难。为了取得成功,攻击者需要精确计时在受害者激光雷达上发射的信号的时间。这必须在纳秒级发生,因为信号以光速传播。当LiDAR使用测得的飞行时间计算距离时,会有微小差异。
如果攻击者成功地欺骗了LiDAR传感器,那么它还必须欺骗机器学习模型。 OpenAI研究实验室所做的工作表明,机器学习模型容易受到特制信号或输入的影响,这就是所谓的对抗性示例。例如,在交通标志上专门生成的贴纸可以使基于相机的感知蒙蔽。
我们发现,攻击者可以使用类似的技术来制作对LiDAR不利的干扰。它们不会是可见的标签,而是专门创建的欺骗信号,以欺骗机器学习模型,使他们认为实际上没有障碍存在。 LiDAR传感器会将黑客的虚假信号提供给机器学习模型,从而将其识别为障碍。
可以制作对抗性示例(假冒对象)以满足机器学习模型的期望。例如,攻击者可能发出卡车不动的信号。然后,要进行攻击,他们可能将其设置在十字路口或放置在自动驾驶汽车前方行驶的车辆上。
两种可能的攻击
为了演示设计的攻击,我们选择了许多汽车制造商使用的自动驾驶系统:百度阿波罗。该产品拥有100多个合作伙伴,并已与多家制造商(包括沃尔沃和福特)达成了批量生产协议。
通过使用百度阿波罗团队收集的真实传感器数据,我们演示了两种不同的攻击方式。在第一个“紧急刹车攻击”中,我们展示了攻击者如何通过诱使移动车辆认为其路径中出现障碍物而突然将其停止。在第二次“ AV冻结攻击”中,我们使用欺骗性的障碍物欺骗了在红灯处停止的车辆,使其在灯变为绿色后仍保持停止状态。
通过利用自动驾驶感知系统的漏洞,我们希望为构建自动驾驶技术的团队触发警报。对自动驾驶系统中新型安全性问题的研究才刚刚开始,我们希望能发现更多可能出现的问题,然后再由不良行为者利用这些问题。